

# **Utility Systems Integration Grid Interface Model Development**

Ed Muljadi

National Wind Technology Center National Renewable Energy Laboratory Golden, Colorado

FY 2004 DOE Wind Program Implementation Meeting
November 16 -18, 2004
Omni Interlocken Hotel
Broomfield, Colorado

- ☐ Load Flow (steady state)
  - ❖ Thermal limit (contingency analysis)
  - Voltage collapse (reactive power requirement)
- ☐ Power System Stability (dynamic-disturbance)
  - Rotor angle stability
  - Frequency stability
  - Voltage stability
- ☐ Unlike conventional single generator power plants, wind plants have many generators with individual controls operating at non-uniform power levels.



### Issues



- Utility planners need validated dynamic model of wind turbines for interconnection studies.
- Not all wind turbines have models available.
- The wind plant models available have not been validated.
- Validation needs high speed data not currently and/or easily available.
- Hardware and control are constantly changed and improved by the manufacturers.



### Addressing the Issues



- ☐ Validation of Dynamic Model
  - ❖ Monitor events, locate fault, reproduce fault on simulation, compare results
- ☐ Collaboration strategy:
  - ❖ Seek unique grid/wind plant configurations that challenge models yet are representative and illustrate sound modeling practice
  - **❖** Seek partners with mutual interests
- ☐ Tight coordination with UWIG User Groups
  - **❖ Wind Plant Modeling and Interconnection User Group**
  - **❖** Operating Impact and Integration Study Work Group
  - Distributed Wind Applications Work Group
  - Market Operation and Transmission Policy User Group



### Scope of Grid Interface



### Model Development

- □ aerodynamic
- □ mechanical (shaft, gearbox, inertia)
- ☐ generator power converter
- ☐ control system
- ☐ electrical grid
- ☐ relay protections
- ☐ aggregation in a wind farm
- □ wide-area control





**Power System Network** 





### Scope of Grid Interface

## \* NSET

### Model Development





**Aggregations: 5 collector points** 



No Aggregations: Single collector point



## **EON Standard for LVRT at Grid Interconnection Proposed by AWEA**





Figure 43: RMS Variation Current 2/4/2004 08:44:52



## **EON Standard for LVRT at Grid Interconnection Proposed by AWEA**







Figure 39: RMS Variation Current 5/27/2004 13:38:20



### **Collaborations**



#### **Collaborative efforts**

- ☐ Tehachapi Wind Farm Evaluation:
  - Southern California Edison and Oak Creek Energy
  - Voltage Collapse, Reactive Power, Energy Storage, Self Excitation and Harmonics Issues – completed
- **□** Validation of ERCOT's PSSE Models:
  - Models GE, NEG Micon NM72, Bonus1300, MVS330, Vestas V80
  - Run simulations on single turbine bases completed
  - Run simulations on the entire ERCOT power systems completed
  - Verifications on the ERCOT power system network with actual data measurement – in progress



### Future Collaborations



#### Wind Farm at Taiban Mesa, New Mexico

- Participants: Public Service of New Mexico, Florida Power and Light, General Electric and Utility Wind Interest Group
- Scope: turbine model verification and wind farm aggregation

#### Wind Farm at Wyoming Energy Center, Uinta County, WY

- Participants: PacifiCorp, Florida Power and Light, Shaw Power Technologies (PTI), Vestas, NREL
- Method: passive fault event monitoring, long term monitoring